How to Save Money After AWS Free Tier Expires: Complete 2026 Cost Optimization Guide

Introduction: The “Graduation Anxiety” of AWS Free Tier Expiration

For many AWS users, the end of the 12-month free tier marks the beginning of real challenges. Suddenly, previously free services start generating bills, with monthly costs potentially skyrocketing from $0 to $100 or more. This article serves as your AWS “graduation guide,” helping you achieve a smooth transition to the paid tier and showing you how to save money after your AWS free tier expires.

Comprehensive Analysis of AWS Free Tier Expiration Impact

Cost Changes After Free Tier Expiration

Service Type Free Tier Allowance Post-Expiration Cost Typical Monthly Usage Cost
EC2 (t2.micro) 750 hours/month $0.0116/hour $8.35
RDS (db.t2.micro) 750 hours/month $0.017/hour $12.24
S3 Storage 5GB $0.023/GB $2.30 (100GB)
EBS Storage 30GB $0.10/GB $10 (100GB)
Data Transfer 15GB outbound $0.09/GB $9 (100GB)
Lambda 1 million requests $0.20/million requests $2-5
CloudWatch 10 metrics $0.30/metric $3-10

Estimated Total Cost: $50-100/month (basic usage)

How to Save Money After AWS Free Tier Expiration: Mental Preparation

Three Stages of Free Tier Expiration:
1. Shock Phase (Month 1): "Why is it suddenly so expensive?"
2. Adaptation Phase (Months 2-3): "I can optimize it this way"
3. Maturity Phase (Month 4+): "Costs are under control"

Immediate Action: Emergency Cost-Saving Measures After AWS Free Tier Expiration

Step 1: 24-Hour Must-Do Checklist

Priority Action Item Expected Savings Difficulty
Urgent Stop all non-production instances 30-50% Easy
Urgent Delete unused resources 20-30% Easy
High Set up budget alerts Prevent overspending Easy
High Downgrade development environment configuration 20-40% Medium
Medium Implement automatic shutdown policy 30-65% Medium

Emergency Resource Cleanup Script

import boto3
from datetime import datetime, timedelta

class PostFreeTierOptimizer:
    """Post-AWS Free Tier Cost Optimizer - Emergency Optimizer"""

    def __init__(self):
        self.ec2 = boto3.client('ec2')
        self.rds = boto3.client('rds')
        self.s3 = boto3.client('s3')

    def emergency_cleanup(self):
        """Emergency cleanup of unused resources"""

        total_savings = 0

        # 1. Stop idle EC2 instances
        instances = self.ec2.describe_instances(
            Filters=[
                {'Name': 'instance-state-name', 'Values': ['running']}
            ]
        )

        for reservation in instances['Reservations']:
            for instance in reservation['Instances']:
                # Check CPU utilization (requires CloudWatch)
                if self.is_instance_idle(instance['InstanceId']):
                    self.ec2.stop_instances(InstanceIds=[instance['InstanceId']])
                    print(f"Stopped idle instance: {instance['InstanceId']}")
                    total_savings += 8.35  # t2.micro monthly cost

        # 2. Delete unattached EBS volumes
        volumes = self.ec2.describe_volumes(
            Filters=[
                {'Name': 'status', 'Values': ['available']}
            ]
        )

        for volume in volumes['Volumes']:
            self.ec2.delete_volume(VolumeId=volume['VolumeId'])
            print(f"Deleted unattached volume: {volume['VolumeId']}")
            total_savings += volume['Size'] * 0.10

        # 3. Clean up old snapshots
        snapshots = self.ec2.describe_snapshots(OwnerIds=['self'])
        cutoff_date = datetime.now() - timedelta(days=30)

        for snapshot in snapshots['Snapshots']:
            if snapshot['StartTime'].replace(tzinfo=None) < cutoff_date:
                self.ec2.delete_snapshot(SnapshotId=snapshot['SnapshotId'])
                print(f"Deleted old snapshot: {snapshot['SnapshotId']}")
                total_savings += 0.05 * snapshot.get('VolumeSize', 0)

        # 4. Release unused Elastic IPs
        addresses = self.ec2.describe_addresses()

        for address in addresses['Addresses']:
            if 'InstanceId' not in address:
                self.ec2.release_address(AllocationId=address['AllocationId'])
                print(f"Released unused EIP: {address['PublicIp']}")
                total_savings += 3.60

        print(f"nEmergency cleanup complete! Estimated monthly savings: ${total_savings:.2f}")
        return total_savings

    def is_instance_idle(self, instance_id, threshold=5.0):
        """Check if instance is idle (CPU < 5%)"""
        cw = boto3.client('cloudwatch')

        response = cw.get_metric_statistics(
            Namespace='AWS/EC2',
            MetricName='CPUUtilization',
            Dimensions=[{'Name': 'InstanceId', 'Value': instance_id}],
            StartTime=datetime.now() - timedelta(hours=1),
            EndTime=datetime.now(),
            Period=3600,
            Statistics=['Average']
        )

        if response['Datapoints']:
            avg_cpu = response['Datapoints'][0]['Average']
            return avg_cpu < threshold
        return False

# Execute emergency optimization
optimizer = PostFreeTierOptimizer()
optimizer.emergency_cleanup()

Long-term Cost-Saving Strategies After AWS Free Tier Expiration

Strategy 1: Intelligent Instance Management

Instance Optimization Decision Matrix:

Current Instance Type Usage Pattern Recommended Solution Expected Savings
t2.micro 24/7 Continuous low load t4g.micro (ARM) 20%
t2.micro 24/7 Intermittent high load t3.micro + credits 15%
t2.small+ Development environment Scheduled start/stop 65%
Any type Interruptible tasks Spot instances 70-90%
Multiple small instances Microservices ECS Fargate 30-40%

Automated Instance Management Script:

def setup_instance_scheduler():
    """Instance scheduler for cost savings after AWS Free Tier expiration"""

    import json

    # Lambda function code
    lambda_code = '''
import boto3
from datetime import datetime

def lambda_handler(event, context):
    ec2 = boto3.client('ec2')
    current_hour = datetime.now().hour

    # Business hours: 9 AM - 6 PM
    if 9 <= current_hour < 18:
        # Start development/testing instances
        instances = ec2.describe_instances(
            Filters=[
                {'Name': 'tag:Environment', 'Values': ['Development', 'Testing']},
                {'Name': 'instance-state-name', 'Values': ['stopped']}
            ]
        )

        instance_ids = []
        for r in instances['Reservations']:
            for i in r['Instances']:
                instance_ids.append(i['InstanceId'])

        if instance_ids:
            ec2.start_instances(InstanceIds=instance_ids)
            print(f"Started {len(instance_ids)} instances")
    else:
        # Stop development/testing instances
        instances = ec2.describe_instances(
            Filters=[
                {'Name': 'tag:Environment', 'Values': ['Development', 'Testing']},
                {'Name': 'instance-state-name', 'Values': ['running']}
            ]
        )

        instance_ids = []
        for r in instances['Reservations']:
            for i in r['Instances']:
                instance_ids.append(i['InstanceId'])

        if instance_ids:
            ec2.stop_instances(InstanceIds=instance_ids)
            print(f"Stopped {len(instance_ids)} instances")

    return {'statusCode': 200}
    '''

    # Create EventBridge rule (runs every hour)
    events = boto3.client('events')

    rule_response = events.put_rule(
        Name='InstanceScheduler',
        ScheduleExpression='rate(1 hour)',
        State='ENABLED',
        Description='Cost savings after AWS Free Tier - Automated instance start/stop'
    )

    print("Instance scheduler setup complete")
    print("Estimated savings: 65% of development/testing environment costs")

Strategy 2: Storage Optimization

S3 Intelligent-Tiering Configuration:

def optimize_s3_storage():
    """S3 storage optimization for cost savings after AWS Free Tier expiration"""

    s3 = boto3.client('s3')

    # Get all buckets
    buckets = s3.list_buckets()

    for bucket in buckets['Buckets']:
        bucket_name = bucket['Name']

        # Configure intelligent tiering
        lifecycle_policy = {
            'Rules': [
                {
                    'Id': 'IntelligentTiering',
                    'Status': 'Enabled',
                    'Transitions': [
                        {
                            'Days': 0,
                            'StorageClass': 'INTELLIGENT_TIERING'
                        }
                    ]
                },
                {
                    'Id': 'ArchiveOldData',
                    'Status': 'Enabled',
                    'Transitions': [
                        {
                            'Days': 90,
                            'StorageClass': 'GLACIER_IR'
                        },
                        {
                            'Days': 180,
                            'StorageClass': 'DEEP_ARCHIVE'
                        }
                    ]
                },
                {
                    'Id': 'DeleteOldData',
                    'Status': 'Enabled',
                    'Expiration': {
                        'Days': 365
                    },
                    'NoncurrentVersionExpiration': {
                        'NoncurrentDays': 30
                    }
                }
            ]
        }

        try:
            s3.put_bucket_lifecycle_configuration(
                Bucket=bucket_name,
                LifecycleConfiguration=lifecycle_policy
            )
            print(f"Optimized storage policy for {bucket_name}")
        except Exception as e:
            print(f"Error optimizing {bucket_name}: {e}")

    print("nS3 storage optimization complete")
    print("Estimated savings: 40-60% of storage costs")

Strategy 3: Database Optimization

RDS Cost Optimization Solutions:

Optimization Method Applicable Scenario Implementation Steps Savings Percentage
Aurora Serverless v2 Irregular workloads Migrate to Serverless 40-80%
Downgrade instance size Over-provisioned Monitor then downgrade 30-50%
Single-AZ deployment Development environment Disable Multi-AZ 50%
Reserved instances Stable workloads Purchase 1-year RI 30-40%
Scheduled stop Non-production environments Stop nights/weekends 60-70%
def optimize_rds_costs():
    """RDS optimization for cost savings after AWS Free Tier expiration"""

    rds = boto3.client('rds')

    # Get all database instances
    db_instances = rds.describe_db_instances()

    recommendations = []
    total_savings = 0

    for db in db_instances['DBInstances']:
        db_id = db['DBInstanceIdentifier']
        instance_class = db['DBInstanceClass']
        multi_az = db['MultiAZ']
        engine = db['Engine']

        # Analyze and provide recommendations
        if 'prod' not in db_id.lower() and multi_az:
            recommendations.append({
                'DB': db_id,
                'Action': 'Disable Multi-AZ',
                'Savings': '$12/month'
            })
            total_savings += 12

        if instance_class == 'db.t2.micro' and engine in ['mysql', 'postgres']:
            recommendations.append({
                'DB': db_id,
                'Action': 'Consider Aurora Serverless',
                'Savings': '$8/month'
            })
            total_savings += 8

        # Check if downgrade is possible
        if 'dev' in db_id.lower() or 'test' in db_id.lower():
            if instance_class != 'db.t2.micro':
                recommendations.append({
                    'DB': db_id,
                    'Action': f'Downgrade from {instance_class} to db.t3.micro',
                    Cost Monitoring System After AWS Free Tier Expiration

Establishing a Three-Tier Monitoring System

def setup_cost_monitoring():
    """AWS免费套餐到期后如何省钱 - 成本监控"""

    cw = boto3.client('cloudwatch')
    sns = boto3.client('sns')

    # 创建SNS主题
    topic = sns.create_topic(Name='AWSCostAlerts')
    topic_arn = topic['TopicArn']

    # 订阅邮件通知
    sns.subscribe(
        TopicArn=topic_arn,
        Protocol='email',
        Endpoint='[email protected]'
    )

    # 层级1:每日支出警报(超过$5)
    cw.put_metric_alarm(
        AlarmName='DailySpendAlert',
        ComparisonOperator='GreaterThanThreshold',
        EvaluationPeriods=1,
        MetricName='EstimatedCharges',
        Namespace='AWS/Billing',
        Period=86400,
        Statistic='Maximum',
        Threshold=5.0,
        ActionsEnabled=True,
        AlarmActions=[topic_arn],
        AlarmDescription='Alert when daily spend exceeds $5',
        Dimensions=[
            {'Name': 'Currency', 'Value': 'USD'}
        ]
    )

    # 层级2:月度预算警报(80%时)
    budgets = boto3.client('budgets')

    budgets.create_budget(
        AccountId=boto3.client('sts').get_caller_identity()['Account'],
        Budget={
            'BudgetName': 'MonthlyBudget',
            'BudgetLimit': {
                'Amount': '50',
                'Unit': 'USD'
            },
            'TimeUnit': 'MONTHLY',
            'BudgetType': 'COST'
        },
        NotificationsWithSubscribers=[
            {
                'Notification': {
                    'NotificationType': 'ACTUAL',
                    'ComparisonOperator': 'GREATER_THAN',
                    'Threshold': 80,
                    'ThresholdType': 'PERCENTAGE'
                },
                'Subscribers': [
                    {
                        'SubscriptionType': 'EMAIL',
                        'Address': '[email protected]'
                    }
                ]
            }
        ]
    )

    # 层级3:异常检测
    ce = boto3.client('ce')

    ce.create_anomaly_detector(
        AnomalyDetector={
            'DimensionValues': ['SERVICE'],
            'MonitorDimension': 'SERVICE'
        }
    )

    print("Cost monitoring system setup complete")
    print("- Daily spend alert: >$5")
    print("- Monthly budget alert: >80% ($40)")
    print("- Anomaly detection: Automatically identifies unusual spending")

Architecture Transformation After AWS Free Tier Expiration

Migrating to Serverless Architecture

Traditional Architecture vs Serverless Cost Comparison:

Component Traditional Architecture Monthly Cost Serverless Alternative Monthly Cost Savings
Web Server EC2 t2.small $16.79 Lambda + API Gateway $5 70%
Database RDS t2.micro $12.41 DynamoDB On-Demand $3 76%
Queue EC2 + RabbitMQ $8.35 SQS $0.50 94%
Cache ElastiCache $12.40 DynamoDB DAX $2 84%
File Storage EBS 100GB $10 S3 $2.30 77%
Total $59.95 $12.80 79%

Serverless Migration Implementation Guide

def migrate_to_serverless():
    """AWS免费套餐到期后如何省钱 - Serverless迁移"""

    # Lambda函数示例(替代EC2 Web服务器)
    lambda_function = '''
import json
import boto3

def lambda_handler(event, context):
    # 处理HTTP请求
    method = event['httpMethod']
    path = event['path']

    if method == 'GET' and path == '/users':
        # 从DynamoDB获取数据
        dynamodb = boto3.resource('dynamodb')
        table = dynamodb.Table('Users')

        response = table.scan()

        return {
            'statusCode': 200,
            'headers': {
                'Content-Type': 'application/json'
            },
            'body': json.dumps(response['Items'])
        }

    return {
        'statusCode': 404,
        'body': json.dumps({'error': 'Not found'})
    }
    '''

    # API Gateway配置
    api_config = {
        'swagger': '2.0',
        'info': {
            'title': 'Serverless API',
            'version': '1.0.0'
        },
        'paths': {
            '/users': {
                'get': {
                    'x-amazon-apigateway-integration': {
                        'uri': 'arn:aws:apigateway:region:lambda:path/functions/arn/invocations',
                        'passthroughBehavior': 'when_no_match',
                        'httpMethod': 'POST',
                        'type': 'aws_proxy'
                    }
                }
            }
        }
    }

    # DynamoDB表配置(按需付费)
    dynamodb_config = {
        'TableName': 'Users',
        'BillingMode': 'PAY_PER_REQUEST',  # 按需付费
        'AttributeDefinitions': [
            {'AttributeName': 'userId', 'AttributeType': 'S'}
        ],
        'KeySchema': [
            {'AttributeName': 'userId', 'KeyType': 'HASH'}
        ]
    }

    print("Serverless架构配置完成")
    print("预计成本: $12.80/月 (vs 传统架构 $59.95/月)")
    print("节省: 79% 或 $47.15/月")

Purchasing Discount Plans: Maximizing Long-Term Savings

AWS Discount Options Comparison

Discount Type Commitment Period Average Discount Applicable Services Flexibility
Savings Plans 1 or 3 years 30-72% EC2/Lambda/Fargate High
Reserved Instances 1 or 3 years 30-75% EC2/RDS/ElastiCache Medium
Spot Instances None 70-90% EC2 Low
Prepaid Credits None 5-10% All Services High

Discount Plan Decision Framework

def calculate_discount_options():
    """AWS Free Tier Expiration Cost Savings - Discount Calculator"""

    # Assumed current monthly spend
    current_monthly_spend = {
        'EC2': 30,
        'RDS': 20,
        'Lambda': 10,
        'Other': 10
    }

    total_monthly = sum(current_monthly_spend.values())

    # Calculate savings for different discount plans
    options = []

    # Option 1: Compute Savings Plan (1 year, all upfront)
    compute_sp_discount = 0.30  # 30% discount
    compute_spend = current_monthly_spend['EC2'] + current_monthly_spend['Lambda']
    compute_savings = compute_spend * compute_sp_discount * 12

    options.append({
        'Plan': 'Compute Savings Plan (1 year)',
        'Upfront': compute_spend * 12 * (1 - compute_sp_discount),
        'Annual Savings': compute_savings,
        'ROI': f'{compute_sp_discount * 100:.0f}%'
    })

    # Option 2: EC2 Reserved Instance (1 year, no upfront)
    ec2_ri_discount = 0.40  # 40% discount
    ec2_savings = current_monthly_spend['EC2'] * ec2_ri_discount * 12

    options.append({
        'Plan': 'EC2 Reserved Instance (1 year)',
        'Upfront': 0,
        'Annual Savings': ec2_savings,
        'ROI': f'{ec2_ri_discount * 100:.0f}%'
    })

    # Option 3: Hybrid Strategy
    hybrid_savings = (
        current_monthly_spend['EC2'] * 0.40 +  # RI for EC2
        current_monthly_spend['Lambda'] * 0.30 +  # SP for Lambda
        current_monthly_spend['RDS'] * 0.35  # RI for RDS
    ) * 12

    options.append({
        'Plan': 'Hybrid Strategy',
        'Upfront': 'Variable',
        'Annual Savings': hybrid_savings,
        'ROI': f'{(hybrid_savings / (total_monthly * 12)) * 100:.0f}%'
    })

    # Print analysis results
    print("=" * 60)
    print("AWS Free Tier Expiration Cost Savings Analysis")
    print("=" * 60)
    print(f"Current Monthly Spend: ${total_monthly}")
    print(f"Annual Spend (No Optimization): ${total_monthly * 12}")
    print("nDiscount Plan Comparison:")

    for option in options:
        print(f"n{option['Plan']}:")
        print(f"  Upfront: ${option['Upfront']}")
        print(f"  Annual Savings: ${option['Annual Savings']:.2f}")
        print(f"  ROI: {option['ROI']}")

    return options

Real-World Case Study: Optimization Journey from $200 to $50

Real Case Analysis

Startup Optimization Case:

Background:
- SaaS product, 10,000 active users
- AWS Free Tier just expired
- First month bill: $198

Pre-optimization Architecture:
- 2x t2.small EC2 (Web servers): $33.58
- 1x t2.small EC2 (Application server): $16.79
- RDS t2.small (MySQL): $24.82
- 100GB EBS: $10
- 200GB S3: $4.60
- Data transfer 500GB: $45
- ElastiCache t2.micro: $12.41
- 2x ELB: $36
- Other: $14.80
Total: $198/month

Optimization Measures Implemented:
Optimization Step Specific Action Cost Change Cumulative Savings
Week 1 Stop development environment overnight running -$25 $25
Week 2 Consolidate web servers, use ALB -$20 $45
Week 3 Switch RDS to Aurora Serverless -$15 $60
Week 4 S3 Intelligent-Tiering -$2 $62
Month 2 Migrate static assets to CloudFront -$30 $92
Month 2 Implement Spot Instances -$18 $110
Month 3 Purchase Savings Plan -$38 $148

Final Result: $50/month (75% savings)

Tools and Automation Script Collection

One-Click Optimization Script

class AWSGraduationOptimizer:
    """AWS Free Tier Expiration Cost Savings - Comprehensive Optimizer"""

    def __init__(self):
        self.session = boto3.Session()
        self.account_id = self.session.client('sts').get_caller_identity()['Account']

    def run_full_optimization(self):
        """Run complete optimization workflow"""

        print("=" * 60)
        print("AWS Free Tier Graduation Optimization Program")
        print("=" * 60)

        steps = [
            ("Analyze Current Costs", self.analyze_costs),
            ("Clean Up Unused Resources", self.cleanup_unused),
            ("Optimize Instance Types", self.optimize_instances),
            ("Configure Auto Scheduling", self.setup_scheduling),
            ("Optimize Storage", self.optimize_storage),
            ("Set Up Monitoring Alerts", self.setup_monitoring),
            ("Generate Optimization Report", self.generate_report)
        ]

        total_savings = 0

        for step_name, step_function in steps:
            print(f"nExecuting: {step_name}")
            print("-" * 40)

            try:
                savings = step_function()
                total_savings += savings
                print(f"✓ Complete - Savings: ${savings:.2f}/month")
            except Exception as e:
                print(f"✗ Error: {e}")

        print("n" + "=" * 60)
        print(f"Optimization Complete!")
        print(f"Estimated Monthly Savings: ${total_savings:.2f}")
        print(f"Annual Savings: ${total_savings * 12:.2f}")
        print("=" * 60)

        return total_savings

    def analyze_costs(self):
        """Analyze cost breakdown"""
        ce = self.session.client('ce')

        response = ce.get_cost_and_usage(
            TimePeriod={
                'Start': (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d'),
                'End': datetime.now().strftime('%Y-%m-%d')
            },
            Granularity='MONTHLY',
            Metrics=['UnblendedCost'],
            GroupBy=[{'Type': 'DIMENSION', 'Key': 'SERVICE'}]
        )

        print("Cost Analysis for Past 30 Days:")
        for result in response['ResultsByTime']:
            for group in result['Groups']:
                service = group['Keys'][0]
                cost = float(group['Metrics']['UnblendedCost']['Amount'])
                if cost > 0.01:
                    print(f"  {service}: ${cost:.2f}")

        return 0  # Analysis does not generate savings

    def cleanup_unused(self):
        """Clean up unused resources"""
        # Implement cleanup logic
        return 25.0  # Return estimated savings

    def optimize_instances(self):
        """Optimize instance configuration"""
        # Implement optimization logic
        return 30.0

    def setup_scheduling(self):
        """Set up automatic scheduling"""
        # Implement scheduling logic
        return 40.0

    def optimize_storage(self):
        """Optimize storage configuration"""
        # Implement storage optimization
        return 15.0

    def setup_monitoring(self):
        """Set up cost monitoring"""
        # Implement monitoring setup
        return 0

    def generate_report(self):
        """Generate optimization report"""
        report = f"""
AWS Free Tier Graduation Optimization Report
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

Optimization Recommendation Priorities:
1. Execute Immediately: Clean up unused resources
2. Complete This Week: Instance type optimization and scheduling setup
3. Complete This Month: Storage optimization and discount plan evaluation
4. Ongoing: Cost monitoring and regular reviews

Next Steps:
- Review cost reports weekly
- Optimize resource configuration monthly
- Evaluate discount plans quarterly
        """

        with open('optimization_report.txt', 'w') as f:
            f.write(report)

        print("Report generated: optimization_report.txt")
        return 0

# Run optimizer
if __name__ == "__main__":
    optimizer = AWSGraduationOptimizer()
    total_savings = optimizer.run_full_optimization()

Summary: Cost-Saving Strategies After AWS Free Tier Expiration

Core Cost-Saving Principles

Principle Implementation Expected Results
Pay Only for What You Use Serverless-first, pay-as-you-go billing Save 60-80%
Automate Everything Fully automated scheduling, monitoring, and optimization Save 40-60%
Continuous Optimization Weekly reviews, monthly adjustments Ongoing improvement
Strategic Investment Evaluate and purchase discount plans Long-term savings of 30-70%

Post-Free Tier Growth Path

Monthly Budget Evolution:
Month 1: $100+ (initial impact)
Month 2: $70 (basic optimization)
Month 3: $50 (deep optimization)
Month 6: $40 (discount plans)
Month 12: $30 (mature optimization)

Final Recommendations

The key to saving money after AWS Free Tier expiration lies in:

  1. Mindset Shift: Transition from "free" to "optimized" thinking
  2. Swift Action: Clean up and optimize immediately
  3. Systematic Approach: Establish a cost optimization framework
  4. Continuous Improvement: Regular reviews and adjustments
  5. Professional Support: Seek expert assistance when necessary

Remember, the end of the AWS Free Tier is not an ending, but rather the beginning of your truly professional cloud computing journey. With the strategies and tools outlined in this guide, you can keep costs well within a reasonable range while enjoying the powerful capabilities of AWS cloud services.


Need help with cloud billing or account setup? Contact Telegram: awscloud51 or visit AWS51.

AWS51

Certified cloud architect focused on AWS/Alibaba Cloud/GCP solutions and billing.